
Kernel Filtering

Benjamin Connault∗

January 2018

Abstract

The paper describes a new approximate nonlinear filtering technique. Strengths of the
technique include: (1) it can be used as long as one can simulate from the model,
without the need to evaluate measurement densities, (2) it is easy to implement, yet
competitive with state-of-the-art alternative techniques in terms of speed and accuracy,
(3) it can be used with some models that include infinite-dimensional state variables.
The main theoretical result of the paper is that the approximation error of the technique
goes to zero with computational power, and that it does so uniformly with respect to
the time horizon of the data.

∗University of Pennsylvania, Department of Economics, connault@econ.upenn.edu
I thank Tim Christensen, Ian Dew-Becker, Leland Farmer, Jesus Fernandez-Villaverde, Ed Herbst, Frank
Schorfheide, Neil Shephard and other participants at seminars where I presented preliminary versions of this
work, as well as my colleagues at UPenn, and the Cowles foundation for its hospitality.

1

mailto:connault@econ.upenn.edu

1 Introduction
Given a theory about the stochastic evolution of a set of economic variables zt = (xt, yt)
and observations y1:t, the nonlinear filter µt := q(xt|y1:t) captures all we can know about
the current unobserved variable xt. In empirical applications, it is a quantity of foremost in-
terest both in and of itself and as a stepping stone towards statistical estimation of the model.

Structural dynamic economic models are rarely, if ever, linear. Nonlinear filtering – the
exercise of computing µt in a nonlinear model – remains challenging despite the existence of
a few techniques, most notably particle filtering.

This paper describes a new nonlinear filtering technique called kernel filtering. Among the
advantages of kernel filtering are: (1) the ability to use kernel filtering as long as one can
simulate from the model, without the need to evaluate measurement densities, (2) easy imple-
mentation and computational speed, (3) guaranteed numerical accuracy properties, proved
in this paper, at the level of state-of-art particle filtering, (4) applicability to some models
with infinite-dimensional state variables such as heterogeneous agent models in macroeco-
nomics.

The paper does not cover statistical estimation: the data generating process for zt is assumed
to be “known”, “calibrated” or estimated by other means. Like any other approximate non-
linear filtering technique, kernel filtering could also be used within a likelihood-based esti-
mation strategy, but this is left for future work.

Like most other nonlinear filtering techniques, kernel filtering follows the recursive rela-
tionship µ?t+1 = Φ?

t+1(µ?t) satisfied by the true population nonlinear filter, by tracking an
approximate nonlinear filter along approximate updates µ̂t+1 = Φ̂t+1 (µ̂t). The key ingredi-
ent of kernel filtering is a representation of probability measures as elements in certain vector
spaces that make the approximations µ̂t and Φ̂t+1 both computationally tractable and the-
oretically justified. The vector spaces in question are specific reproducing kernel Hilbert
spaces, as in Guilbart (1979), which motivates the name kernel filtering.

This paper takes the perspective of a two-stage algorithm. In a pre-data stage, an approxi-
mation of the update function Φ̂ is built. This will typically involve stochastic approximation
techniques, such as simulations. The second stage actually “runs the filter” on the data, us-
ing the approximate update function Φ̂. This is a deterministic stage: running the filter
twice on the same data will give the same result.

The paper describes two flavors of kernel filtering. Full-rank kernel filtering (Algorithm 1) is
simpler and more accurate for a fixed tuning parameter n that can be interpreted as a “grid
size” or a “number of particles”, but requires user-provided “grids” and does not scale well
with n. Low-rank kernel filtering (Algorithm 2) adds one layer of approximation but picks
grids adaptively and scales very well. All told low-rank kernel filtering (Algorithm 2) will be

2

the preferred option in most configurations.

The theoretical part of the paper provides guarantees about the accuracy of kernel filtering.
Specifically, Theorem 1 proves time-uniform error bounds that demonstrate that the tech-
nique does not accumulate approximation errors despite its recursive nature.

Simulation evidence demonstrates that kernel filtering compares favorably to the particle fil-
ter, both computationally and in terms of accuracy. This is despite the fact that the particle
filter uses knowledge of the measurement density, a priori a strong advantage.

I present one example application of kernel filtering in a stylized dynamic supply/demand
model. By design the model is easily simulated, but measurement densities are unavailable,
making kernel filtering particularly suitable. The unobserved variable is a demand curve and
the observed variable is the clearing price. Random independent supply curves play the role
of “innovations”. While price in a given period carries little information about the underlying
demand curve, the time-series of prices together with a model that disciplines how the de-
mand curve may change from one period to the next can have nontrivial information content.

The fact that probability measures can be fruitfully embedded in particular reproducing
kernel Hilbert spaces has been known since at least Guilbart (1979). Kernel embeddings are
related to the “kernel trick” of machine learning and have been used for various purposes,
see eg. Berlinet and Thomas-Agnan (2003) or Steinwart and Christmann (2008). This paper
makes a few contributions of independent interest to the theory of kernel embeddings, see
eg. Lemma 2, Lemma 4 or Lemma 9. This paper’s “kernel disintegrations” are similar
to the “kernel Bayes rule” of Fukumizu et al. (2013). The kernel Bayes rule was used in
the context of nonlinear filtering in two papers related to the current paper, Fukumizu
et al. (2013) and Song et al. (2013). The proof technique used in the theoretical part of
this paper follows the classical telescopic-sum-of-geometric-bounds tradition, see eg. Moral
and Guionnet (2001). There are several alternative techniques to do approximate nonlinear
filtering including particle filtering techniques (Pitt and Shephard (1999), Kantas et al.
(2015)), and techniques based on discretization of xt, see Farmer (2017) and references
therein.

3

2 Kernel Filtering
This section introduces the (full-rank) kernel filtering algorithm. It starts with a brief mo-
tivation and then describes the algorithm in pseudo-code. Low-rank kernel filtering, a high-
performance variant of the algoritm, is described in section 3. Formal statements and tech-
nical assumptions are given in the theoretical part of the paper, section 4.

A fixed hidden Markov data generating process q? for an unobserved variable xt ∈ Ex and an
observed variable yt ∈ Ey is given, in the form of a one-step-ahead Markov transition kernel
Q?(z, dz′) for zt = (xt, yt). There is no unknown parameter to be estimated. Kernel filtering
can be used as soon as the user knows how to simulate from Q?(z, dz′). In this section we
assume that the Markov kernel factorizes as:

Q?(z, dz′) = A?(x, dx′)B?(x′, dy′) = A?(x, dx′)b?(x′, y′)λ(dy′)
The restriction on the dynamics is for ease of exposition only: kernel filtering can be used
without any restriction on the dynamics.

Starting from an initial value µ?1 = q?(dx1|y1) and once the data y1:t has been realized and
observed, the (population) nonlinear filter µ?t = q?(dxt|y1:t) satisfies a deterministic recursive
equation. Writing η?t+1 = q?(dxt+1|y1:t) for the intermediary “predictive density”, one moves
from µ?t to η?t+1 by applying the Markov kernel A?(x, dx′), and moves from η?t+1 to µ?t+1 by
reweighting the measure η?t+1(dx′) by the positive function x′ → b?t+1(x′) := b?(x′, yt+1), ie.
by taking a Bayes step with prior η?t+1(dx′), conditional B?(x′, dy′), and data yt+1.

The key idea of kernel filtering is to interpret these probabilistic operations in a functional-
analytic framework that allows both for computationally tractable approximations and for
formal analysis of the approximation errors. In other words we want to interpret the opera-
tion µ(dx) → λ(dy) = µ(dx)A(x, dy) as a continuous linear operation between two suitable
vector spaces that include P(Ex) and P(Ey), and similarly for other operations such as
marginalizations, forming joints, conditioning, etc. The theory of kernel embeddings pro-
vides us with such a context. Here we give a brief informal summary of this theory, and we
postpone a formal exposition to section 4.

A kernel embedding space on a ground space E is a particular Hilbert space H of functions
on E, such that any probability measure µ(dx) on E is represented1 by some function fµ inH.
We will freely abuse notation by writing µ instead of fµ. The space H is characterized by its
kernel function k(x, x′) := 〈fδx , fδ′x〉, hence the name of kernel embedding space. Reciprocally,
a suitable kernel function k(x, x′) induces a kernel embedding space H on E. In a kernel
embedding space, one can explicitly compute the inner product of two measures as:

〈µ, µ′〉H = µ(dx)µ(dx′)k(x, x′)
1“Represented” in the following sense: for any test function g ∈ H, we can compute the integral of g(x)

with respect to µ(dx) by taking the inner product of fµ(x) and g(x) in H, µ(dx)g(x) = 〈fµ, g〉H . fµ is not
a density with respect to some dominating measure.

4

Two examples of kernels on E = [0, 1] are:

k(x, x′) = e−|x−x
′| (the Laplace kernel) and k(x, x′) = e−(x−x′)2 (the Gauss kernel)

Kernel filtering approximates the true nonlinear filter µ?t , seen as a vector in H, by a finite
linear combination of basis vectors Bx = νx1:nx . Every basis vector νxi ∈ H is chosen to
be a probability measure, and the linear combinations are constrained to be simplex com-
binations, so that µ̂t = ∑nx

i=1 wtiν
x
i can be interpreted as a mixture of probabilities. The

approximation error is measured by ‖µ?t − µ̂t‖H . For suitable kernels, this is a meaningful
way to measure the error – specifically ‖·‖H is a metric for the standard weak topology on
probability measures. Theorem 1 in section 4 shows that the approximation error of the
kernel filtering algorithm goes to zero as computing power increases.

We now turn to describing the kernel filtering algorithm. Following the structure of the true
population update function Φ?

t , the approximate update function Φ̂t happens in two steps:
a Markov step, and a Bayes step. We start with µ̂t with coordinates wt in Bx.

In the Markov step, the transition A?(x, dx′) is approximated by a Markov transition matrix
Â in Bx. We simply define Â row-by-row: Âνxi := âi, where âi(dx′) = ∑nx

j=1 aijν
x
j (dx′) is

close to a?i (dx′) := νxi (dx)A?(x, dx′). One way to compute the aij weights is to simulate a
large sample x̃1:L from a?i (dx′) and to compute the orthogonal projection of ãi = ∑

l
1
L
δx̃l on

Bx, followed by a simplex normalization. The finite-rank approximation of µ → µA in the
Bx basis is simply w → wÂ. This is exactly like a finite-state Markov transition.

The Bayes step works as follows. Think of Bayes rule with prior η, conditional B and data
yt+1 as forming the joint J(dx, dy) = η(dx)B(x, dy), disintegrating J as m(dy)π(y, dx) and
finally conditioning on the realized data value π(yt+1, dx). Kernel filtering starts from an ap-
proximation B̂ of B? computed similarly to Â, computes an approximate joint η̂ → Ĵ = η̂B̂,
and finally realizes an approximate disintegration using a regularization strategy. The in-
basis expression for computing kernel disintegrations is given in pseudo-code below. The
theoretical study of kernel disintegrations and how they contribute to the approximation er-
ror of kernel filtering is one of the core contributions of the paper, see in particular Theorem
1, Lemma 9 and Lemma 14.

We can now summarize the kernel filtering algorithm. In a pre-data stage, we pick bases
Bx and By for probability measures on Ex and Ey. Then we build the matrices Â and
B̂ that approximate A?(x, dx) and B?(x, dy) in those bases. In a post-data stage, we ac-
tually “run the filter” by applying successive Markov and Bayes steps, starting from the
coordinates w1 in Bx of an initial µ̂1. These two stages are described in pseudo-code below.
gram(u1:m,v1:n) means the Gram matrix Gij = 〈ui, vj〉H and gram(u1:m,x1:n) is shorthand
for gram(u1:m,(δxi)i∈1:n). probnorm(·) is a simplex normalization.

5

tuning parameter: m

output: Â

Â = zeros(nx,nx)
for i=1:nx
x2 = zeros(m)
for j=1:m
x = rand(νxi)
x2[j] = rand(A?,x)

end
w2 = ones(m)/m
ai = gram(Bx,Bx)

−1
* gram(Bx,x2) * w2

Â[i,:] = probnorm(ai)
end

return Â

tuning parameter: m

output: B̂

B̂ = zeros(nx,ny)
for i=1:nx
y2 = zeros(m)
for j=1:m
x = rand(νxi)
y2[j] = rand(B?,x)

end
w2 = ones(m)/m
bi = gram(By,By)

−1
* gram(By,y2) * w2

B̂[i,:] = probnorm(bi)
end

return B̂

Algorithm 1: kernel filtering. Pre-data stage.

tuning parameter: τ

other inputs: Â, B̂, w1
output: µ̂1:T

w = zeros(nx,T)
w[:,1] = w1
for t=1:T-1

ηt+1 = w[:,t]’ * Â

J = diagm(ηt+1) * B̂

D = diagm(ηt+1 * B̂)
m = J * (gram(By,By) * D + τ I)^{-1} * gram(By,yt+1)
w[:,t+1] = probnorm(m)

end
return w

Algorithm 1: kernel filtering. Post-data stage.

Kernel smoothing is also available, using similar techniques. Using suitable combinations
of Markov steps and Bayes steps, kernel filtering and smoothing can accommodate models
with arbitrary hidden Markov dynamics.

We make a few comments on the algorithm’s parameters.

Suitable kernel functions on Ex and Ey need to be chosen. Lemma 4 identifies three prop-
erties that make a kernel function “suitable” for the purpose of kernel filtering2. Lemma 5
proves that a modified Laplace kernel k(x, x′) = 0.9e−|x−x′| + 0.1 is suitable on R and its
subsets and that the Laplace kernel itself k(x, x′) = e−|x−x

′| is suitable on bounded subsets
of R. In applications, x or y often have several subcomponents. For instance, x may include

2‖·‖H metrizes weak convergence for probability measures; the constant functions belong to H; and
multiplication (f, f ′)→ ff ′ is a bounded bilinear operation from H ×H to H

6

a discrete “regime” variable x1, and two types of continuous variables, x2 ∈ R+ and x3 ∈ R2.
Lemma 6 shows that the kernel k((x, y), (x′, y′)) = kx(x, x′)ky(y, y′) is suitable on Ex × Ey
when kx, ky are suitable on Ex, Ey. Finding suitable kernels for more exotic spaces, such
as infinite-dimensional state spaces, is a topic of interest. For example, Lemma 7 suggests
to use k̂(µ, µ′) = 0.9e−‖µ−µ′‖k + 0.1 on P(E), where k is a suitable kernel on E, and makes
partial progress towards proving suitability of k̂.

The choice of bases Bx and By matters, as expressed in assumptions (A1-3) of Theorem
1. Domain-specific knowledge should be used when possible. A basis of Dirac probability
measures δxi – a “grid” xi – taken from a long simulated time-series is a reasonable default
option. The Gram matrix of a basis δxi is simply the matrix Gij = k(xi, xj). See also after
Theorem 1 for additional comments. The number of simulation draws m used to approxi-
mate each row of Â or B̂ can typically be taken large enough to make the simulation error
small compared to the approximation error induced by the basis projections.

The regularization parameter τ is a bandwidth-type parameter. It should be taken of order
ε

1
1+α
2 , where ε2 measures the approximation error in B̂ and α is a smoothing parameter be-
tween 0 (light smoothing) and 1 (strong smoothing), see Theorem 1 for a precise statement.
Note that ε2 can typically be computed with good accuracy in the process of building B̂.
Standard considerations about bandwidth choice rules apply, although they are out-of-scope
for this paper.

Under the assumptions of Theorem 1, the initialization error in µ̂1 disappears quickly.

Kernel filtering (Algorithm 1) has the following computational complexity, as a function of
the dimensions nx and ny of the bases Bx and By. The (nx × nx) and (nx × ny) matrices
Â and B̂ must be kept in memory, and repeated multiplication by Â and B̂ means that the
post-data stage has computational cost O(Tnx(nx + ny)). In practice this means that Algo-
rithm 1 is not practical beyond one or two thousands basis elements. One way to mitigate
the computational complexity of the post-data stage is to compute low-rank factorizations
of Â and B̂, eg. using truncated singular value decomposition. This brings the running
time of the post-data stage to O(Tr(nx + ny)) for some low rank r. However the matrices
Â and B̂ still need to be computed and held in memory beforehand, making this solution
not entirely satisfying. Algorithm 2 in the next section uses an alternative pre-data stage to
obtain low-rank approximations Âr and B̂r directly, without the need to compute (full-rank)
Â and B̂ in the first place.

7

3 High Performance Variant: Low-Rank Kernel Filter-
ing

This section presents the low-rank kernel filtering algorithm, a high-performance variant of
kernel filtering. Low-rank kernel filtering is the better option in most configurations. First,
it can computationally scale up to many more “grid points” n at the cost of a small accu-
racy loss for a fixed n, with net effect typically being much higher accuracy. Second the
“grid points” are selected automatically by the algorithm, and the bandwidth parameter τ
is replaced by a rank parameter r ∈ N that is directly tied to the computational complexity,
making low-rank kernel filtering also more user-friendly.

Low-rank kernel filtering is similar to kernel filtering (Algorithm 1) except that Â and B̂
are approximated by low-rank matrices Âr and B̂r. Âr and B̂r are computed directly in
a modified pre-data stage: (1) simulate a sample Ĵ = (xi, x′i)1:nx from a joint distribution
ν(dx)A?(x, dx′), for ν(dx) a probability measure that covers Ex in a suitable fashion, (2)
compute Âr by kernel disintegration from Ĵ , together with low-rank approximations of the
relevant Gram matrices. Good quality low-rank approximations for Gram matrices can be
obtained using the Nyström method, see Gittens and Mahoney (2016). Explicit pseudo-code
is given below:

tuning parameters: ν, n, r
output: G10, G20, G40, Bx, By

x1 = zeros(n)
bx = zeros(n)
by = zeros(n)
for i=1:n
x1[i] = rand(ν)
bx[i] = rand(A?,x1[i])
by[i] = rand(B?,x1[i])

end
x0 = sample(x1,r,replace = false)
y0 = sample(by,r,replace = false)
G10 = gram(x1,x0)
G20 = gram(bx,x0)
G40 = gram(by,y0)
return G10, G20, G40, bx, by, y0

Algorithm 2: low-rank kernel filtering. Pre-data stage.

8

tuning parameter: none
other inputs: w1
output: µ̂1:T

w = zeros(nx,T)
w[:,1] = w1
for t=1:T-1
ηt+1 = w[:,t]’ * G20 * (G01G10)−1 ∗G01
J = diagm(ηt+1) * G20 * (G01G10)−1 ∗G01
D = diagm(ηt+1 * G20 * (G01G10)−1 ∗G01)
G05 = gram(y0,yt+1)
pi = J * G40* (G04D

2G40)−1
* (G04DG40) * (G04G40)−1

* G50
w[:,t+1] = probnorm(pi)

end
return w

Algorithm 2: low-rank kernel filtering. Post-data stage.

For computational efficiency the low-rank matrices Âr and B̂r are never stored in memory
in Algorithm 2, but their expression would be (see appendix section 8 for a derivation):

Âr = G20(G10G01)−1G01 and B̂r = G20(G10G01)−1G01

A heuristic description of low-rank kernel filtering at a more abstract level is as follows.
The true transition kernels A?(x, dx′) and B?(x′, dy′), seen as operators between the relevant
kernel embedding spaces, admit finite-rank approximations A?r and B?

r that are of good
quality if A? and B? are smooth enough. An unfeasible but very high-quality kernel filter
would use A?r, B?

r and the bases Bx, By spanned by the corresponding leading singular
vectors. Algorithm 2 is an approximate, randomized version of this unfeasible, high-quality
kernel filter.

4 Theory: accuracy of the Kernel Filtering Algorithm
In section 4.1, we describe the theory of kernel embeddings. Kernel embeddings go back to
at least Guilbart (1979). This paper makes some contributions of independent interest to
this theory, eg. Lemma 2, Lemma 4 or Lemma 9. In section 4.2 we present the paper’s main
theorem, time-uniform error bounds for kernel filtering, Theorem 1. First we agree on some
notation.

E is a Polish metric space considered with its Borel σ-algebra. M(E),M+(E), P(E) are the
spaces of (signed) bounded measures, positive bounded measures, probability measures on E.
B(E) is the space of bounded measurable functions on E. We may drop E from the notation
when the context is clear. For Hilbert spaces Hx, Hy, B(Hx, Hy), B2(Hx, Hy), B1(Hx, Hy)
are the spaces of bounded, Hilbert-Schmidt, trace-class linear operators with the operator
norm ‖·‖, the Hilbert-Schmidt norm ‖·‖2 and the trace norm ‖·‖1. K(Hx, Hy) is the compact

9

operators, a closed subspace of B(Hx, Hy). We may write B(H) for B(H,H) and similarly
for B2(H), B1(H), K(H). For two Hilbert spaces Hx and Hy, Hx ⊗ Hy means the Hilbert
tensor product. We will frequently use the canonical isomorphism between t ∈ H1⊗H2 and
T ∈ B2(H1, H2) given by 〈t, f ⊗ g〉 = 〈Tf, g〉 (the equivalent of vectorizing a matrix in finite
dimensions). We will use 〈·, ·〉 as general notation for duality brackets, eg. the inner product
in a Hilbert space or 〈µ, f〉 = µ(dx)f(x) for µ ∈M(E) and f ∈ B(E).

A kernel k is a function from E×E to R that is symmetric positive definite, i.e. for any x, x′
in E, k(x, x′) = k(x′, x), and for any x1:n ∈ E and a1:n ∈ R, ∑i,j aik(xi, xj)aj ≥ 0. Recall
that a reproducing kernel Hilbert space H on E is a Hilbert space of functions on E such that
evaluation at any point x ∈ E is a bounded linear operation on H. By Riesz representation,
evaluation at any point x can be obtained by inner product with some element kx ∈ H:
for any f ∈ H, f(x) = 〈kx, f〉. The function k(x, x′) = 〈kx, kx′〉 is a kernel, called the
reproducing kernel of H. The linear span of the kx’s is a dense subset of H. Reciprocally,
the Moore-Aronzajn theorem states that a kernel k induces a unique reproducing kernel
Hilbert space H of functions on E with k as reproducing kernel. In this paper, we will
consider only bounded, (jointly) continuous kernel, in which case all the elements of H are
continuous bounded functions on E. See Saitoh (1997) for more details.

4.1 Kernel embeddings
If k is a bounded continuous kernel,M(E) can be “embedded” in H in the following sense.
First note that for f ∈ H:

‖f‖∞ = sup
x∈E
|〈δx, f〉| ≤ γk ‖f‖H for any γk such that ‖kx‖ =

√
k(x, x) ≤ γk

As a consequence any ν ∈M(E) induces a bounded linear functional on H:

〈ν, f〉 ≤ ‖ν‖TV ‖f‖∞ ≤ ‖ν‖TV γk ‖f‖H

By Riesz representation, there is a (unique) fν ∈ H such that for any f ∈ H, ν(dx)f(x) =
〈fν , f〉. We may sometimes abuse notation and write ν for fν . The embedding induces a
topology onM(E) and its subsets via the pseudometric dH(ν, ν ′) = ‖ν − ν ′‖H .

Kernel embeddings are appealing because they give access to a computationally tractable
“probabilistic calculus”: marginalizations, forming joints or applying Markov kernels are
continuous linear operations, there are natural notions of orthogonal projections, basis rep-
resentations, finite-rank approximations, etc. In this section we develop the main tools of this
calculus. We start by identifying three regularity properties that make a kernel embedding
well-behaved. Then we give examples of kernels that satisfy all three regularity conditions
and a recipe to build new kernels (Lemma 5). Finally we consider embeddings of Markov
transition kernels and kernel disintegrations. All proofs are given in section 7.

10

The first and foremost regularity condition that we require is that the topology induced by
dH on P(E) be statistically meaningful. In general a kernel embedding needs not even be
injective, meaning dH(µ, µ′) could be zero for two distinct µ 6= µ′ ∈ P(E), or equivalently µ
and µ′ would be represented by the same function fµ ∈ H – there would not be enough test
functions in H to tell apart µ and µ′. Guilbart (1979) proved the following:
Lemma 1:
Let E be a Polish metric space.
(i) There exists a bounded continuous kernel k on E such that k induces the weak topology

on P(E) (Théorème d’existence 4.5).

(ii) If k is bounded continuous, the topology induced on P(E) is weaker than weak (Théorème
de faible comparaison 1.5).

We will say that k is characteristic if it induces the weak topology on P(E) – the finest we
can hope for. For a subset Ω of M(E), we will also say that k is Ω-nondegenerate if for
ν, ν ′ ∈ Ω, dH(ν, ν ′) = 0 implies ν = ν ′. At face-value P(E)-nondegeneracy is much weaker
than the characteristic property, but it turns out that both properties are equivalent if E is
locally compact Hausdorff, see Theorem 55 in Simon-Gabriel and Schölkopf (2016), quoted
as Lemma 11 in section 7. For translation-invariant kernels k(x, x′) = φ(x−x′) on Euclidean
spaces, there is an explicit criterion to detect whether a kernel is characteristic, see Corollary
33 in Simon-Gabriel and Schölkopf (2016), quoted as Lemma 10 in section 7.

We know turn to kernel marginalizations and a second regularity property. For two re-
producing kernel Hilbert spaces Hx, Hy with kernels kx, ky on ground spaces Ex, Ey, the
Hilbert tensor product H = Hx ⊗Hy is a reproducing kernel Hilbert space on Ex ×Ey with
kernel k((x, y), (x′, y′)) = kx(x, x′)ky(y, y′) (see Saitoh (1997)). If kx and ky are continuous
and bounded then so is k, and H embeds joint probability measures. For joints µ(dx, dy),
µ′(dx, dy) with corresponding marginals µx(dx), µ′x(dx), we would like ‖µx − µ′x‖Hx to be
small when ‖µ− µ′‖H is small, in other words it is natural to require that the operation
of marginalizing joint probability measures admit a continuous linear extension from H to
Hx. The following lemma gives a necessary and sufficient condition for this to be the case,
thereby identifying a second regularity condition for kernel embeddings.
Lemma 2: Kernel marginalizations and embedding spaces having constants
Let Hx and Hy embed probability measures. Marginalization extends to a bounded linear
operator ΨM from Hx ⊗ Hy to Hx if, and only if, the constant function 1 belongs to Hy.
When this is the case, the extension is unique and ‖ΨM‖ = ‖1‖Hy .
The kernel embedding of a probability measure µ in H comes attached with a covariance
operator Dµ that will play an important role further down.
Lemma 3: Covariance operators
Let µ ∈ H be the kernel embedding of a probability measure. The expression 〈Dµf, g〉 =
µ(dx)f(x)g(x) defines a bounded operator Dµ on H which is positive self-adjoint and trace-
class, with ‖Dµ‖1 = µ(dx)k(x, x).

11

In particular, kernel functions identically equal to one on their diagonal, ie. k(x, x) = 1,
provide an appealing normalization ‖Dµ‖1 = 1. It will be useful to be able to control the
error ‖Dµ −Dµ′‖ when ‖µ− µ′‖ is small, in other words it is natural to require that the
operation µ → Dµ extend to a continuous linear operator from H to B(H). The following
lemma gives a necessary and sufficient condition for this to hold, thereby identifying a third
regularity condition.

Lemma 4: Continuity of the covariance operator map, embedding spaces having products
The map µ→ Dµ extends to a bounded linear operator ΨD from H to B(H) if, and only if,
multiplication is a bounded bilinear operation M on H ×H, meaning thar for any f, g ∈ H:

‖fg‖H = ‖M(f, g)‖H ≤ ‖M‖ ‖f‖H ‖g‖H

When this is the case, the extension is unique and ‖ΨD‖ = ‖M‖.

We have identified three regularity conditions that make kernel embeddings well-behaved
with respect to basic probabilistic operations: being characteristic, having constants, and
having products. Lemma 1 only guarantees the existence of kernels with the first property.
Do kernels that satisfy all three regularity properties even exist? For concrete common
ground spaces E, do we know how to pick a kernel that satisfies all three regularity properties?
The next lemma provides a positive answer to both questions:

Lemma 5:

(i) k1(x, x′) = e−|x−x
′| is characteristic, has constants and has products on E = [0, 1].

(ii) k2(x, x′) = 0.9e−|x−x′|+0.1 is characteristic, has constants and has products on E = R.

(iii) k3(x, x′) = e−(x−x)2 does not have constants and does not have products on E = [0, 1]
nor on E = R.

If kx and ky have all three regularity properties, does k((x, y), (x′, y′)) = kx(x, x′)ky(y, y′) do
as well on Ex × Ey? Not quite, but almost, as proved in the following lemma. This allows
one to obtain a wide range of well-behaved kernels from a few standard well-behaved kernels,
such as those of Lemma 5.

Lemma 6:

(i) If kx, ky are P-nondegenerate and have constants, then k is P-nondegenerate and has
constants.

(ii) If kx, ky are characteristic and have constants, and if Ex×Ey is locally compact Haus-
dorff, then k is characteristic and has constants.

(iii) If kx is such that f ⊗ f ′ → ff ′ can be extended to a continuous linear operation from
Hx ⊗Hx to Hx, and similarly for ky, then k also has this property.

12

The assumption in (iii) is slightly stronger than having products. Lemma 12 in the appendix
gives a criterion to detect whether a kernel has such “strong products”. An inspection of the
proof of Lemma 5 shows that the kernels k1 and k2 of Lemma 5 have “strong products”.

What about more exotic ground spaces, in particular infinite-dimensional state spaces? We
would like to have access to well-behaved kernels on those spaces in order, for example, to
apply kernel filtering techniques when one of the state variables is infinite-dimensional. In
most cases this remains an open question. As long as E is Polish – which is enough for
almost all applications – Lemma 1 guarantees the existence of a characteristic kernel k, and
Lemma 13 in section 7.2 shows that k can be taken with constants without loss of generality.
However this does not tells us how to pick a kernel in practice. The following lemma suggests
a kernel for the ground space Ê = P(E) and makes partial progress towards proving that it
has good properties.

Lemma 7:
Let k induce a kernel embedding on a ground space E. Consider Ê = P(E) and define the
kernel k̂ on Ê by:

k̂(µ, µ′) = 0.9e−‖µ−µ′‖k + 0.1

k̂ is continuous bounded and induces a kernel embedding on Ê. Furthermore:

(i) k̂ has constants.

(ii) If k is P-nondegenerate, then k̂ is fa-nondegenerate, where fa is the set of finite
measures, ie. finite linear combinations of Dirac measures δµi, µi ∈ P(E).

So far we have seen how to embed probability measures as vectors in particular vector
spaces. Now we turn to Markov transition kernels Q(x, dy), which we would like to see as
linear operators between vector spaces µ ∈ Hx → TQµ ∈ Hy, where of course TQµ ∈ Hy

would also be the embedding of µ(dx)Q(x, dy) in Hy.

Definition 1:
Let Hx, Hy kernel embedding spaces and Q(x, dy) a Markov transition kernel. We will say
that Q has a kernel embedding if δx ∈ Hx → Q(x, dy) ∈ Hy can be extended continuously as
a linear operator from Hx to Hy.

The assumption in Definition 1 can be seen as a type of Feller continuity assumption. By
duality, Q has a kernel embedding if the conditional expectation of a test function g ∈ Hy

belongs to Hx. As an example, if Ex = Ey = [0, 1] and k(x, x′) = e−|x−x
′|, then Hx = Hy is

the Sobolev space W21(0, 1), see Saitoh (1997).

The following lemma shows that in kernel embedding spaces you form the joint of µ(dx) and
Q(x, dy) by the linear operation J = DµQ.

Lemma 8: Kernel joints
Let Hx and Hy kernel embedding spaces, µx(dx) a probability measure, Q(x, dy) a Markov

13

transition kernel with kernel embedding and µ(dx, dy) = µx(dx)Q(x, dy). Then J = DµxQ is
the kernel embedding of µ in H1 ⊗H2.

Finally consider the operation of disintegrating (or “conditioning”). Conditioning is not
a continuous operation. To see this, suppose J = DµQ as in Lemma 8. Heuristically
Q = D−1

µ J , but Dµ is no invertible since it is trace-class, as shown in Lemma 3. Instead we
compute kernel disintegrations using a regularization strategy. The following lemma is one
of the key technical lemmas of the paper:

Lemma 9: Kernel disintegrations
Let Hx and Hy be kernel embedding spaces, Hx with a bounded multiplication operator Mx

and Hy with constants. Let µ(dx, dy) be a joint probability distribution on Ex × Ey with
disintegration µx(dx)Qµ(x, dy). Let J ∈ Hx ⊗ Hy be the kernel embedding of µ and D ∈
B(Hx) be the covariance operator of µx. Assume that Qµ has a kernel embedding Q that
satisfies the following smoothness condition: there isW ∈ B2(Hy, Hx), cW > 0 and 0 < s ≤ 1
such that:

Q = DsW and ‖W‖2 ≤ cW (1)

By Lemma 8, it holds:
DQ = J

Assume also that D is injective. Let µ̂(dx, dy) be another joint probability distribution on
Ex × Ey with kernel embedding Ĵ . Define:

δ :=
∥∥∥Ĵ − J∥∥∥

2

Finally, write D̂ for the covariance operator of the marginal µ̂x of µ̂ on Ex and define:

Q̂ =
(
D̂ + τI

)−1
Ĵ with τ = δ

1
1+s

Then: ∥∥∥Q̂−Q∥∥∥
2
≤ (1 + ‖Mx‖ ‖1‖Hy cW + cW)δ

s
1+s

14

4.2 Accuracy of the kernel filter
We now state the main result of this paper. Theorem 1 shows not only that the approximation
error induced by kernel filtering goes to zero with computing power, but also that it does so
in a time-uniform manner. In other words, kernel filtering does not accumulate numerical
error across time despite its recursive structure.

Theorem 1: Time-uniform error bounds
Let Ex, Ey be Polish metric spaces and (Xt, Yt) ∈ Ex × Ey follow (strict) hidden Markov
dynamics with transition kernel A(x, dx) and measurement kernel B(x, dy). Let Hx and Hy

be embedding spaces with products and constants. Compute an approximate nonlinear filter
µ̂t via the kernel filtering algorithm described in section 2, with τ = ε

1
1+α
2 where ε2 and α are

defined below. Assume:

(A1) Â is such that:
max
νxi ∈Bx

‖νxi (dx)A(x, dx)− âi(dx)‖Hy ≤ ε1

(A2) B̂ is such that:

max
νxi ∈Bx

∥∥∥νxi (dx)B(x, dy)− νxi (dx)⊗ b̂i(dy)
∥∥∥
Hx⊗Hy

≤ ε2

(A3) The distance between δyt and the linear span of By is bounded by ε3 (almost surely).

(A4) The initialization error ‖µ̂1 − µ1‖ is bounded by ε4.

(A5) The conditional distribution (Xt+1|Yt+1, y1:t) has a kernel embedding Q ∈ B(Hy, Hx)
that satisfies the following smoothness assumption. Write D for the covariance operator
of the distribution of Yt+1|y1:t. There is W ∈ B2(Hy, Hx), cW > 0 and 0 < α ≤ 1 such
that:

Q = DαW and ‖W‖2 ≤ cW y1:t − a.s.

(A6) B(x, dy) has density b(x, y) with respect to some dominating measure λ(dy) and there
is cb > 0 such that bt+1(x) := b(x, yt+1) ∈ Hx and ‖bt+1‖Hx

infx∈Ex bt+1(x) < cb (a.s.).

(A7) Call p̂s+1:t the density of (Ys+1:t|Xs) with respect to λt and ps+1:t(x) := p̂t(ys+1:t|Xs =
x). There is cp > 0 such that for any s, t, ps+1:t ∈ Hx and ‖ps+1:t‖Hx

infx∈Ex ps+1:t(x) < cp (a.s.).

(A8) For any t, (X1, dXt|y1:t) has a kernel embedding Qt and there is cQ > 0 and ρ < 1 such
that, for any t, ‖Qt‖ ≤ cQρ

t (a.s.).

Then there are constants γ1, γ2, γ3, γ4, independent of t, such that:

‖µt − µ̂t‖Hx ≤ γ1ε1 + γ2ε
α

1+α
2 + γ3ε3 + γ4ρ

tε4

15

Proof. Following a proof technique going back to at least Moral and Guionnet (2001), we
decompose the approximation error as follows:

µ̂t − µt = Φ̂t (µ̂t−1)− Φt (µ̂t−1) + Φt (µ̂t−1)− Φt (µt−1)
= . . .

=
t∑

s=2

(
Φs+1:t

(
Φ̂s (µ̂s−1)

)
− Φs+1:t (Φs (µ̂s−1))

)
+ (Φ2:t (µ̂1)− Φ2:t (µ1))

The proof is done in two parts: (1) controlling the one-step-ahead approximation error and
(2) controlling the many-steps-ahead propagation error. The one-step-ahead approximation
error is controlled as follows:∥∥∥Φ̂s (µ̂s−1)− Φs (µ̂s−1)

∥∥∥ =
∥∥∥M̂s

(
Â (µ̂s−1)

)
−Ms (A (µ̂s−1))

∥∥∥
≤
∥∥∥M̂s

(
Â (µ̂s−1)

)
−Ms

(
Â (µ̂s−1)

)∥∥∥
+
∥∥∥Ms

(
Â (µ̂s−1)

)
−Ms (A (µ̂s−1))

∥∥∥
The first term is the approximation error in the Bayes step and the second term is the
approximation error in the Markov step propagated through one Bayes step. The Bayes step
error is controlled by Lemma 14 using (A2), (A3) and (A5):∥∥∥M̂s

(
Â (µ̂s−1)

)
−Ms (A (µ̂s−1))

∥∥∥ ≤ (1 + ‖My‖ ‖1‖Hx cW + cW)ε
α

1+α
2 + cW ε3

The Markov step error is controlled by Lemma 15 using (A1):∥∥∥Â (µ̂s−1)− A (µ̂s−1)
∥∥∥ ≤ ε1

The propagation error is controlled by Lemma 16 using (A6):∥∥∥Ms

(
Â (µ̂s−1)

)
−Ms (A (µ̂s−1))

∥∥∥ ≤ ‖Mx‖
(
c2
b + cb

)
ε1

The many-steps-ahead propagation error is controlled by proving a geometric contraction
property of the population filter. This is independent of the approximation technique being
used. Under (A7) and (A8), it is proved in Lemma 17 that there is κ > 0 such that:

‖Φs+1:t(µ)− Φs+1:t(µ′)‖H ≤ κρt−s ‖µ− µ′‖H

A geometric sum of the one-step-ahead error bounds concludes the proof:

‖µ̂t − µt‖ ≤
κ

1− ρ ‖M
x‖
(
c2
b + cb

)
ε1 + κ

1− ρ(1 + ‖My‖ ‖1‖Hx cW + cW)ε
α

1+α
2

+ κ

1− ρcW ε3 + κ

1− ρε4

16

We make a few comments.

(A1-4) measure the “input” approximation errors while (A5-A8) control how those input er-
rors propagate to the output error. For a non-Dirac basis Bx, (A2) can be much stronger than
(A1): asking that the independent product νxi (dx)⊗

(∑
i bijν

y
j (dy)

)
be a good approximation

of the joint η?i (dx, dy) = νi(dx)B(x, dy) is much stronger than asking that ∑i bijν
y
j (dy) be a

good aproximation of the marginal b?i (dy) = νi(dx)B(x, dy), except if νi(dx) is a Dirac. (A3)
is quite strong and would imply that very large bases must be used for a small ε3. However
an inspection of the proof of Lemma 14 shows that the relevant error is

∥∥∥Q̃t

(
δ̂yt − δyt

)∥∥∥
where Q̃t is the kernel embedding of (Xt|Yt, y1:t−1): this error can be small even with small
bases if Q̃t has good continuity properties.

Assumptions (A7-8) are high-level assumptions and inconveniently involve many-steps-ahead
objects whose properties can be hard to study in practice. The following assumptions imply
(A7-8) (see Lemma 18 for a proof):

(A7’) There is a probability measure ω(dx′) , Cω and cω > 0 such that:

cωω(dx′) ≤ A(x, dx′) and ∀f ∈ Hx, f ≥ 0, ‖Ag‖Hx ≤ Cωω(dx′)g(x′)

(A8’) For any t, (X1, dX2|y1:t) is bounded from Hx to (M(E), ‖·‖TV).

Theorem 1 obtains strong results from strong assumptions. All smoothness assumptions are
required to hold y1:t almost surely. A trivial remark is that the conclusion holds on those
paths y1:t that satisfy the assumptions. Heuristically and at a finer level, we can expect
kernel filtering to have good properties on average, although this type of results is beyond
the current paper.

5 Simulations
This section presents simulation results for a linear Gaussian model. In the linear Gaussian
case, we can compute the exact nonlinear filter by Kalman filtering and report the root-
mean-squared-error between the filter mean computed via kernel filtering and the true one.
The data generating processes are AR(1) of dimension d that were drawn randomly and are
fixed across simulations. The measurement equation is simply yt+1 = xt+1 +σN (0, I), where
σ = 0.1 or 0.4. The accuracy of the kernel filter is compared to that of a simple bootstrap
particle filter with the number of particles n equal to the length of the basis used in kernel
filtering. Table 1 reports results for the (full-rank) kernel filter (Algorithm 1), and Table
2 reports results for the low-rank kernel filter (Algorithm 2). We also present indicative
timings based on Julia implementations of the particle and kernel filtering algorithms on a
laptop.

17

(n,m) = (100, 500) (n,m) = (500, 1000)

(d, σ) PF τ
√
n = 0.1 0.01 0.001 PF 0.01

(1, 0.4) 0.082
(0.06 sec)

0.032
(3.38)

0.015
(3.44)

0.019
(3.48)

0.033
(0.25)

0.009
(141.45)

(2, 0.4) 0.123
(0.07)

0.152
(19.35)

0.152
(19.4)

0.167
(18.76)

0.053
(0.3)

0.095
(562.81)

(3, 0.4) 0.17
(0.08)

0.245
(23.14)

0.234
(21.0)

0.232
(22.1)

0.083
(0.28)

0.144
(629.11)

Table 1: Full-rank kernel filtering (Algorithm 1). Average RMSE over 20 Monte Carlo
draws of length 200 time-series. Average computing time between parentheses. Sobol grids
and m simulation draws on each row in the pre-data stage.

n = 100 n = 1000 n = 10000

(d, σ) PF r = 50 PF 50 PF 50 200

(1, 0.4) 0.089
(0.05 sec)

0.383
(0.17)

0.027
(0.46)

0.12
(0.41)

0.015
(4.18)

0.057
(3.5)

0.068
(21.93)

(1, 0.1) 0.078
(0.05)

0.346
(0.16)

0.021
(0.47)

0.116
(0.43)

0.005
(4.21)

0.083
(3.49)

0.063
(20.86)

(2, 0.4) 0.122
(0.05)

0.466
(0.18)

0.039
(0.46)

0.21
(0.44)

0.013
(4.24)

0.164
(3.78)

0.124
(21.66)

(2, 0.1) 0.152
(0.05)

0.509
(0.18)

0.051
(0.46)

0.292
(0.44)

0.017
(4.21)

0.281
(3.7)

0.211
(21.78)

(3, 0.4) 0.169
(0.06)

0.523
(0.16)

0.059
(0.45)

0.32
(0.45)

0.023
(4.26)

0.291
(3.69)

0.197
(22.76)

(5, 0.4) 0.428
(0.08)

0.664
(0.18)

0.145
(0.49)

0.545
(0.49)

0.055
(4.7)

0.497
(4.11)

0.341
(24.76)

(5, 0.1) (crash) 0.687
(0.18)

(crash) 0.589
(0.5)

0.125
(4.71)

0.554
(4.12)

0.414
(23.97)

(8, 0.4) 0.577
(0.09)

0.81
(0.18)

0.271
(0.54)

0.754
(0.56)

0.121
(5.44)

0.722
(4.72)

0.538
(26.49)

Table 2: Low-rank kernel filtering (Algorithm 2). Average RMSE over 20 Monte Carlo
draws of length 200 time-series. Average computing time between parentheses.

As a reminder, particle filtering has the strong advantage of exact Bayes steps via density
evaluations. In low dimensions there is a regime where the full-rank kernel filter is more
accurate than the particle filter, because the Markov step is more accurate. However the
computational disadvantage of full-rank kernel filtering quickly increases with n. Further-
more, the accuracy of full-rank kernel filtering deteriorates quickly with the dimension. Note
that the pre-data stage of Algorithm 1 has an embarrassingly parallel structure, allowing for
up to 100x speed-ups (not shown here) by computing each row of Â and B̂ in parallel.

18

Low-rank kernel filtering is roughly 5x less accurate than particle filtering across the board.
It also scales much better than Algorithm 1 both in terms of computational time and in
terms of dimension, allowing reasonable accuracy in medium dimensions (5-10). Low-rank
kernel filtering is not susceptible to online errors the way particle filtering is, as happened
here with (d, σ) = (5, 0.1) and 100 or 1000 particles.

6 Example: a model with latent supply and demand
curves

Consider a stylized model with N1 persistent buyers who come back to a market at each
period t ∈ 1:T , together with N2 fresh noise buyers and N3 fresh sellers that join the market
at each period for one period only. Buyers post bids, sellers post asks and the market clears.
A persistent buyer’s bid is bit = 1

1+e−βit with:

βit+1 = ρβit + σiuit+1︸ ︷︷ ︸
idiosyncratic shock

+ σvt+1︸ ︷︷ ︸
aggregate shock

uit+1, vt+1 ∼ N (0, 1)

The noise buyers’ bids bjt are a random sample from a random Beta random variable:

c1t, c2t ∼ U([0, 5]) bjt ∼ Beta(c1t, c2t)

The sellers’ asks ait are a random sample from a fixed Beta(1, 1).

From an econometric perspective, the unobserved state xt is the persistent part of the de-
mand curve bit and the observed variable is simply the clearing price pt. From observing
only the time-series of prices, we may want to know about the current state of the persistent
demand curve. The price realization in a single period obviously contains very little informa-
tion about the unobserved demand curve. However a sequence of price realizations together
with a structural model that disciplines how the demand curve may change from one period
to the next may be much more informative. Suppose for instance that the price is median
in period 10 but was high from period 1 to period 9. Then it is likely that the unobserved
persistent demand was and is still high but that a temporary low realization of the noise
part of the demand drove down the price. This is precisely the kind of question that the
(population) nonlinear filter captures, in a quantitative way.

In this example kernel filtering is particularly appealing, because we can very easily simulate
and we don’t have access to a measurement density. Furthermore, kernel filtering can handle
large values of N1 or even a continuous demand curve – an infinite-dimensional state variable
– without difficulty as long as we have a way to simulate from the model.

Kernel filtering is very easy to implement. One-step-ahead simulations are trivial. We only
need to provide two things: kernel functions and bases. We can use the Laplace kernel for
the observed state yt = pt ∈ [0, 1]. For the demand curve xt, we use kx(x, x′) = e−d(x,x′),

19

where d(x, x′) = 1
n

1
n

∑
ij e
−|xi−x′j | is the Laplace kernel distance between the distribution of

bids x and x′. For By we use a uniform grid on [0, 1], and for Bx we draw nx demand curves
x̃1:nx that span a wide array of shapes:

x̃i = N1 iid draws from Beta(c3j, c4j) c3j, c4j ∼ U([0, 5])

We consider two DGP calibrations. In DGP1, there are 100 persistent buyers, no noise
buyers, 100 sellers, the aggregate shock standard deviation is 0.2 and the idiosyncratic one
is 0.01. In DGP2, there are 25 persistent buyers, 25 noise buyers, 50 sellers and both the
aggregate and idiosyncratic shock standard deviations are 0.1. In both DGPs ρ = 0.999.
In DGP1 there is very little uncertainty beyond the aggregate level of persistent demand,
which will be revealed with high precision by realized prices. DGP2 has more noise. We run
Algorithm 1 and report the filter quantiles for the mean of the persistent demand curve in
Figures 1 and 2. For nx = 81, ny = 40 and T = 1000, the pre-data stage takes around 20
seconds and the post-data stage (actual filtering) under one second.

Figure 1: DGP1.

20

Figure 2: DGP2.

As expected, the observed prices reflect very closely the underlying state of the demand
curve in DGP1. There is very little uncertainty as captured by the nonlinear filter having
narrow interquantile width. In DGP2 it is hard to read anything from the time-series of
prices which is very noisy, yet the filter median (black line) is able to capture movement in
the true mean bid (green line). The uncertainty about the location of the unobserved mean
bid is reflected by the quantile width. For both DGP1 and DGP2, the true mean bid falls
in any given z% interquantile band roughly z% of the time, as it is supposed to do.

7 Proofs

7.1 Proofs for section 4.1
Proof of Lemma 2. Assume 1 ∈ Hy. We define ΨM explicitly via its adjoint: Ψ′Mf = f ⊗ 1.
Fix µ, take any f ∈ Hx:

〈ΨMµ, f〉 = 〈µ,Ψ′Mf〉 = 〈µ, f ⊗ 1〉 = µ(dx, dy)f(x) = µx(dx)f(x)

This proves ΨMµ = µx. Reciprocally, assume marginalization is a bounded linear operation
ΨM . Let f ∈ H and x0 ∈ E such that f(x0) = 1. Define e = (Ψ′Mf)kx0 ∈ Hy. We show that
e = 1. For any y ∈ Ey:

〈e, ky〉 = 〈(Ψ′Mf)kx0 , ky〉 = 〈Ψ′Mf, kx0 ⊗ ky〉 = 〈f,ΨM(kx0 ⊗ ky)〉 = 〈f, kx0〉 = 1

Then we can check Ψ′Mf must be f ⊗ 1 and ‖ΨM‖ = ‖Ψ′M‖ = ‖1‖Hy is clear.

Proof of Lemma 3. µ(dx)f(x)g(x) ≤ ‖µ‖TV ‖f‖∞ ‖g‖∞ ≤ ‖µ‖TV γ2
k ‖f‖k ‖g‖k shows that

〈Dµf, g〉 = µ(dx)f(x)g(x) does indeed define a bounded linear operator Dµ. Self-adjointness

21

and positivity are clear. We explicitly compute the trace of Dµ. Fix ui any orthonormal
basis in H. By Perceval formula:

k(x, x) = 〈kx, kx〉 =
∑
i

〈ui, kx〉2 =
∑
i

ui(x)2

Define dn(x) = ∑n
i=1 ui(x)2. dn converges pointwise from below to d(x) := k(x, x). By

Lebesgue dominated convergence:
n∑
i=1
〈Dµui, ui〉 = µ(dx)dn(x)→ µ(dx)d(x)

Proof of Lemma 4. Assume multiplication is bounded. We define explicitly ΨD : f → Df as
follows:

〈Dfg, g
′〉 := 〈f,M(g, g′)〉 ≤ ‖f‖ ‖M‖ ‖g‖ ‖g′‖

The inequality shows that this is a valid definition of ΨD ∈ B(H,B(H)). Assume ΨD ∈
B(H,B(H)). ΨD(H) must in fact be contained in K(H) because it sends a dense subset
of H to B1(H). Use the same notation for ΨD ∈ B(H,K(H)) from now on. Its dual is
Ψ′D ∈ B(B1(H), H). Fix f, f ′ ∈ H. f ⊗ f ′ belongs to B1(H) as a rank one operator. We
show that Ψ′Df ⊗ f ′ is the product ff ′:

〈Ψ′Df ⊗ f ′, kx〉 = 〈f ⊗ f ′,ΨDkx〉 = 〈Dkxf, f
′〉 = f(x)f ′(x)

Define M(f, f ′) := Ψ′Df ⊗ f ′. Let any g ∈ h.

〈M(f, f ′), g〉 = 〈Dgf, f
′〉 ≤ ‖ΨD‖ ‖g‖ ‖f‖ ‖f ′‖

We need four preparatory lemmas before proving Lemma 5. First, we quote the two following
useful lemmas:

Lemma 10: (Corollary 33 in Simon-Gabriel and Schölkopf (2016))
Let k(x, x′) a kernel on Rn such that k(x, x′) = φ(x− x′) for a continuous bounded function
φ. Then k is characteristic if, and only if, the Fourier transform of φ has full support.

Lemma 11: (Theorem 55 in Simon-Gabriel and Schölkopf (2016))
Let E be a locally compact Hausdorff metric space and k a bounded continuous kernel on E.
k is characteristic if, and only if, k is P(E)-nondegenerate.

Then we give a useful criterion for proving that a kernel embedding space has “strong prod-
ucts”, ie. that multiplication is not only bilinear bounded, but in fact Hilbert-Schmidt.

Lemma 12: Criterion for strong products
Let Hk a kernel embedding space. The following are equivalent:

22

(i) Multiplication is a bounded linear operator from H ⊗H to H.

(ii) Hk2 is included in Hk in the set-theoretic sense.
Proof. Assume (i) and consider ∆ = M ′. 〈∆kx, f ⊗ f ′〉 = f(x)f(x′) so that ∆kx = kx ⊗ kx.
By continuity of ∆ : ∥∥∥∥∥∆∑

i

aikxi

∥∥∥∥∥
2

=
∑
ij

aiaj〈kxi ⊗ kxi , kxj ⊗ kxj〉

=
∑
ij

aiajk(xi, xj)2

must be ≤ ‖∆‖2
∥∥∥∥∥∑

i

aikxi

∥∥∥∥∥
2

≤ ‖∆‖2∑
ij

aiajk(xi, xj)

In particular ‖∆‖2 k − k2 is a kernel function, which implies Hk2 ⊂ Hk by Theorem 6 p.37
of Saitoh (1997). Each step of the argument was in fact an equivalence.

Finally we show that the flaw of not having constants can be fixed for free. It is an open
question whether not having products can similarly be fixed for free.
Lemma 13: Adding constants
Let Hk a kernel embedding space without constant. Consider the kernel k′ = k + 1. Then:
(i) Hk′ has constants.

(ii) Hk′ induces the same topology on P(E) as Hk.

(iii) If multiplication is bounded on Hk, so is it on Hk′.
Proof. If H is a RKHS on E with kernel k and without constant, the standard Hilbert sum
H ′ = H ⊕ 1 is a RKHS on E with kernel k′ = k + 1. Any g ∈ H ′ can be uniquely written
g(x) = f(x) + λ for some f ∈ H, and ‖g‖2

H′ = ‖f‖2
H + λ2, see Saitoh (1997). This proves

(1). Now for (ii) take two probability measures µ and µ′:

‖µ− µ′‖2
k′ = (µ−µ′)(dx)(µ−µ′)(dx′)k(x, x′) + (µ−µ′)(dx)(µ−µ′)(dx′)1(x, x′) = ‖µ− µ′‖2

k

Now we prove (iii). Suppose H has bounded multiplication. WLOG assume λ, λ′ > 0 in the
following display:

‖(f + λ)(f ′ + λ′)‖2
H′ = ‖(ff ′ + λf ′ + λ′f) + λλ′‖2

H′

= ‖(ff ′ + λf ′ + λ′f)‖2
H + (λλ′)2

≤ (‖ff ′‖H + λ ‖f ′‖H + λ′ ‖f‖H + λλ′)2

≤ γ2
M(‖f‖H + λ)2(‖f ′‖H + λ′)2 with γM = max(1, ‖M‖H)

≤ 4γ2
M

(
‖f‖2

H + λ2
) (
‖f ′‖2

H + λ′2
)

= 4γ2
M ‖f + λ‖2

H′ ‖f
′ + λ′‖2

H′

23

We are now ready to prove Lemma 5. Call k1(x, x′) = e−|x−x
′|, k2(x, x′) = 0.9e−|x−x′| + 0.1,

k3(x, x′) = e−(x−x′)2 and H1, H2 , H3 their respective reproducing kernel Hilbert spaces.

Proof of Lemma 5. Lemma 10 can be used to show that k1, k2 and k3 are characteristic on
R. On E = [0, 1], H1 is known to be the Sobolev space W21(0, 1) (Saitoh (1997)), which has
constants. The RKHS for k2

1(x, x′) = e−2|x−x′| is alsoW21(0, 1), so that by Lemma 12, H1 has
(strong) products. This proves (i). On R H1 is also W21(R) and so has no constant, which
explains why we focus on k2 instead, using the technique of Lemma 13. k1 has products
because the RKHSs for k1 and k2

1 are both W21(R). Thus k2 has products as well. This
is enough to prove (ii) using Lemma 13. Finally H3 has not constant (Theorem 2 in Minh
(2010)) and f(x) = e−1.5x2 ∈ H3 but f 2(x) = e−3x2

/∈ H3 (Theorem 3 in Minh (2010)). This
proves (iii).

Proof of Lemma 6, (i) and (ii). Let λ, λ′ ∈ P(E) and ‖λ− λ′‖k = 0. The marginals on
Ex are equal as measures because ‖λx − λ′x‖Hx = 0 by kernel marginalization and kx is P-
nondegenerate. Call λ1 = λx = λ′x. Consider the disintegrations λ = λ1(dx)q(x, dy) and
λ′ = λ1(dx)q′(x, dy). Pick ui, vj orthonormal bases for Hx and Hy. wij = ui ⊗ vj is an
orthonormal basis for Hx ⊗ Hy. ‖λ− λ′‖k = 0 implies that their coordinates in wij are
equal: for any i, j:

〈λ,wij〉 = λ(dx, dy)wij(x, y) = λ1(dx)ui(x)q(x, dy)vj(y) = λ1(dx)ui(x)q′(x, dy)vj(y)

Fix j. Define fj(x) = q(x, dy)vj(y), νj(dx) = fj(x)λ1(dx) and f ′j(x) and ν ′j(dx) similarly.
We have:

for any i, νj(dx)ui(x) = ν ′j(dx)ui(x)
Because kx is nondegenerate, this implies νj(dx) = ν ′j(dx) which implies fj(x) = f ′j(x),
λ1(dx) almost surely. This is true for any j, so that q(x, dy) = q′(x, dy) (λ1(dx) almost
surely) because ky is nondegenerate. Finally:

λ1(dx)q(x, dy) = λ1(dx)q′(x, dy) ie λ = λ′

Thus k is nondegenerate. H also clearly has constants. This proves (i). (ii) is a corollary of
(i) and Lemma 11.

Proof of Lemma 6, (iii). Take Mx ∈ B(Hx ⊗ Hx, Hx). Fix x0 ∈ Ex. Mx′δx0 = δx0 ⊗ δx0

because:
〈Mx′δx0 , f ⊗ f ′〉 = 〈δx0 ,M(f, f ′)〉 = f(x0)f ′(x0)

Similarly for My. Now define:

A = Mx ⊗My ∈ B((Hx ⊗Hx)⊗ (Hy ⊗Hy), Hx ⊗Hy)

the standard tensor product of operators, and:

T : f ⊗ f ⊗ g ⊗ g′ → f ⊗ g ⊗ f ′ ⊗ g′ ∈ B(Hx ⊗Hx ⊗Hy ⊗Hy, Hx ⊗Hy ⊗Hx ⊗Hy)

24

Finally define:
M = AT ′

We show that M(h, h′) = hh′ for h, h′ ∈ (Hx ⊗ Hy), ie. that M continuously extends
multiplication as required:

〈Mh⊗ h′, kx ⊗ ky〉 = 〈Th⊗ h′, (Mx ⊗My)′(kx ⊗ ky)〉
= 〈Th⊗ h′, (kx ⊗ kx)⊗ (ky ⊗ ky)〉
= 〈h⊗ h′, (kx ⊗ ky)⊗ (kx ⊗ ky)〉
= h(x, y)h′(x, y)

Proof of Lemma 7. (i) follows from Lemma 13. (ii) follows from Theorem 3.3 in Meckes
(2013) because under the P-nondegeneracy assumption on k, the metric space (P(E), ‖·‖H)
is of negative type, as a subset of a Hilbert space. Note that if E is compact, then P(E) is
compact and P-nondegeneracy would automatically “lift” to the kernel being characteristic
by Lemma 11. The open question is under which assumption fa-nondegeneracy “lifts” to
P-nondegeneracy.

Proof of Lemma 8. For any f ∈ Hx, g ∈ Hy:

〈J, f ⊗ g〉 = 〈Jf, g〉 = 〈DµxQg, f〉 = µx(dx)f(x)Q(x, dy)g(y) = µ(dx, dy)(f ⊗ g)(x, y)

Proof of Lemma 9. Write R0 for the Moore-Penrose pseudo-inverse of D, so that, because D
is injective, Q = R0J . For τ > 0 define Rτ := (D + τI)−1and R̂τ :=

(
D̂ + τI

)−1
. Decompose

the error as: ∥∥∥Q̂−Q∥∥∥
2
≤
∥∥∥R̂τ Ĵ − R̂τJ

∥∥∥
2

+
∥∥∥R̂τJ −RτJ

∥∥∥
2

+ ‖RτJ −R0J‖2

Recall that for a positive self-adjoint operator T and any α > 0, 0 ≤ s ≤ 1, ‖α(T + αI)−1T s‖ ≤
αs. The first variance term is bounded as:∥∥∥R̂τ Ĵ − R̂τJ

∥∥∥
2
≤
∥∥∥R̂τ

∥∥∥ ∥∥∥Ĵ − J∥∥∥
2
≤ 1
τ
δ

Recall A−1 −B−1 = A−1(B − A)B−1. By Lemma 2 and Lemma 4:∥∥∥D̂ −D∥∥∥ =
∥∥∥ΨDΨM

(
Ĵ − J

)∥∥∥ ≤ ‖Mx‖ ‖1‖Hy δ

The source condition (1) implies ‖Q‖2 ≤ ‖D‖
s ‖W‖2 ≤ cW . The second variance term is

bounded as: ∥∥∥R̂τJ −RτJ
∥∥∥

2
≤
∥∥∥R̂τD −RτD

∥∥∥ ‖Q‖2

≤
∥∥∥∥(D̂ + τI

)−1
∥∥∥∥ ∥∥∥D̂ −D∥∥∥ ∥∥∥(D + τI)−1 D

∥∥∥ ‖Q‖2

≤ 1
τ
· (‖Mx‖ ‖1‖Hy δ) · 1 · cW

25

Recall I − (A+ τI)−1A = τ(A+ τI)−1. The bias term is bounded as:

‖RτJ −R0J‖2 =
∥∥∥(D + τI)−1DQ−Q

∥∥∥
2

≤
∥∥∥τ(D + τI)−1Ds

∥∥∥ ‖W‖2 using (1) Q = DsW

≤ τ scW

This concludes the proof. τ was chosen to balance the variance and bias terms. The constant
has not been optimized.

7.2 Proof of Theorem 1
Lemma 14: Approximation errors in Bayes step
Let µx(dx) = ∑n

i=1 aiνi(dx) be a mixture of probabilities, B(x, dy) a Markov kernel. Write
µ(dx, dy) = µx(dx)B(x, dy) for the corresponding joint and µ(dx, dy) = µy(dy)Q(y, dx) for
its disintegration. Let πy(dy) another probability distribution, π(dx, dy) = πy(dy)Q(y, dx)
the joint and πx(dx) the marginal of π. Suppose we compute an approximation π̂x of πx as
follows:

1. Compute Ĵ = ∑n
i=1 aiνi(dx)⊗ b̂i, for b̂i(dy) probability distributions. Define µ̂y(dy) the

marginal of Ĵ and D̂ the covariance operator of µ̂y.

2. Compute Q̂ = Ĵ
(
D̂ + τI

)−1
, τ > 0 to be defined below.

3. Compute π̂x = Q̂π̂y for some probability measure π̂y.

Assume:

(i) Hx and Hy are embedding spaces such that Hx has constants and Hy has a bounded
multiplication operator My.

(ii) maxi ‖νi(dx)B(x, dy)− νi(dx)⊗ bi(dy)‖Hx⊗Hy ≤ ε1

(iii) Q(y, dx) has a kernel embedding Q that satisfies the following smoothness condition
(write D for the covariance operator of µy): there is W ∈ B2(Hx, Hy), cW > 0 and
0 < s ≤ 1 such that:

Q = DsW and ‖W‖2 ≤ cW (2)

(iv) ‖π̂y − πy‖ ≤ ε2 and D is injective.

Choose τ = ε
1

1+s
1 . Then:

‖π̂x − πx‖ ≤ (1 + ‖My‖ ‖1‖Hx cW + cW)ε
s

1+s
1 + cW ε2

26

Proof. First by triangle inequality: ∥∥∥Ĵ − J∥∥∥
H1⊗H2

≤ ε1

We can then apply the disintegration lemma, Lemma 9:∥∥∥Q̂−Q∥∥∥
2

= (1 + ‖Mx‖ ‖1‖Hy cW + cW)ε
s

1+s
1

Finally:

‖π̂x − πx‖ =
∥∥∥Q̂π̂y −Qπy∥∥∥

≤
∥∥∥(Q̂−Q) π̂y∥∥∥+ ‖Q (π̂y − πy)‖

≤ (1 + ‖Mx‖ ‖1‖Hy cW + cW)ε
s

1+s
1 + cW ε2

Lemma 15: Approximation errors in Markov step
Let µ(dx) = ∑n

i=1 aiνi(dx) be a mixture of probabilities, Q(x, dy) a Markov kernel and:

π(dy) = µQ =
n∑
i=1

aiqi(dy) where: qi = νiQ

Suppose we compute an approximation π̂ of π by:

π̂(dy) =
n∑
i=1

aiq̂i(dy)

If ‖qi − q̂i‖ ≤ ε, then:
‖π − π̂‖ ≤ ε

Proof. Triangle inequality.

Lemma 16: Propagation of errors through a Bayes step
Let R ∈ B(H) and φ a measurable function on E, bounded below by φl > 0 and such that
there is c > 0 such that for any µ, µ′ ∈ P(E), |µφ − µ′φ| ≤ c ‖µ− µ′‖H . Then for any
µ, µ′ ∈ P(E): ∥∥∥∥∥µRµφ − µ′R

µ′φ

∥∥∥∥∥
H

≤
(
‖R‖ c

φ2
l

+ ‖R‖ 1
φl

)
‖µ− µ′‖H

In particular, if H has constants and products, if R = Mf and φ = Mf1 = f ∈ H, then
automatically |µMf1− µ′Mf1| ≤ ‖f‖H ‖µ− µ′‖H and:∥∥∥∥∥µRµφ − µ′R

µ′φ

∥∥∥∥∥
H

≤ ‖M‖
(
‖f‖2

H

f 2
l

+ ‖f‖H
fl

)
‖µ− µ′‖H

27

Proof. ∥∥∥∥∥µRµφ − µ′R

µ′φ

∥∥∥∥∥
H

= sup
‖g‖H≤1

∥∥∥∥∥µRgµφ
− µ′Rg

µ′φ

∥∥∥∥∥
H

≤ sup
‖g‖H≤1

∥∥∥∥∥µRg(µ′φ− µφ)
µφµ′φ

∥∥∥∥∥
H

+
∥∥∥∥∥µRg − µ′Rgµ′φ

∥∥∥∥∥
H

≤
(
‖R‖ c

φ2
l

+ ‖R‖ 1
φl

)
‖µ− µ′‖H

Lemma 17: Geometric contractivity of the nonlinear filter
Under (A7) and (A8) of Theorem 1, there is κ > 0 such that:

‖Φs+1:t(µ)− Φs+1:t(µ′)‖H ≤ κρt−s ‖µ− µ′‖H

Proof. We can obtain µt from µs by applying one Bayes rule with respect to the conditional
density p(ys+1:t|xs), followed by t − s Markov transitions Q(xr, dxr+1|yr:t), i.e. Φs+1:t can
be written Φs+1:t(µ) = Ts+1:t(µ)Ss+1 . . . St where Ts+1:t is the Bayes kernel with respect to
p(ys+1:t|xs) and Sr is the Markov kernel Q(xr, dxr+1|yr:t). This is a classical proof technique
for the total variation norm, see eg. Künsch (2005). The Bayes step error is controlled by
Lemma 16 using (A7):

‖Ts+1:t(µ)− Ts+1:t(µ′)‖ ≤ ‖Mx‖ (c2
p + cp) ‖µ− µ′‖

A direct consequence of (A8) concludes the proof:

‖Φs+1:t(µ)− Φs+1:t(µ′)‖H ≤ cQρ
t−s ‖Mx‖ (c2

p + cp) ‖µ− µ′‖H

Lemma 18:
Assumptions (A7’) and (A8’) together imply assumptions (A7) and (A8).

Proof. Condition (A7) is adapted from the classical condition cωω(dx′) ≤ A(x, dx′) ≤
Cωω(dx′) which has been used in total variation contraction studies at least since Atar
and Zeitouni (1997). First we prove (A7). Note:

p(ys+1:t|xs) = A(xs, dxs+1)b(ys+1|xs+1)p(ys+2:t|xs+1)

By induction p(ys+2:t|xs+1) ∈ H and by (A7’):

‖A(xs, dxs+1)b(ys+1|xs+1)p(ys+2:t|xs+1)‖H ≤ Cωω(dxs+1)b(ys+1|xs+1)p(ys+2:t|xs+1)

and:

Q(xs, dxs+1)b(ys+1|xs+1)p(ys+2:t|xs+1) ≥ cωω(dxs+1)b(ys+1|xs+1)p(ys+2:t|xs+1)

28

We get (A7) as a consequence:

‖p(ys+1:t|xs)‖H ≤
Cω
cω

inf
xs
p(ys+1:t|xs)

We now turn to (A8). (A7’) implies that A(x, dx′) ≤ γkCωω(dx′). Then:

Q(x1, dx2|y1:t) = q(y1:t|x1, x2)A(x1, dx2)
A(x1, dx2)q(y1:t|x1, x2)

= q(y1|x1, x2)q(y2:t|x2, x1)A(x1, dx2)
A(x1, dx2)q(y1|x1, x2)q(y2:t|x2, x1)

= q(y1|x1)q(y2:t|x2)A(x1, dx2)
A(x1, dx2)q(y1|x1)q(y2:t|x2)

≥ cωq(y2:t|x2)ω(dx2)
γkCωω(dx2)q(y2:t|x2)

Hence Q(xs, dxs+1|y1:t), s ≤ t − 1, satisfies a Doeblin criterion and is contractive for the
total variation norm with ρ = 1 − cω

γkCω
. (A8’) guarantees that Q(x1, dx2|y1:t) is bounded

from ‖·‖H to ‖·‖TV and Q(xt−1, dxt|y1:t) has a kernel embedding, ie. is bounded from ‖·‖H
to ‖·‖H , and a fortiori from ‖·‖TV to ‖·‖H as well. This concludes the proof.

8 Appendix: low-rank approximation formulas
The formulas underpinning the low-rank kernel filter (Algorithm 2) follow from Nyström
approximations applied to kernel disintegrations and to changes of bases. See Gittens and
Mahoney (2016).

First we look at kernel disintegrations. Start from a joint discrete probability measure
J̃ = ∑nx

i=1
∑ny
j=1 wijδxi⊗δyj . Recall that kernel disintegration is defined as Q̃ =

(
D̃ + τI

)−1
J̃ .

In order to allow for cases where D̃ is not positive, which can arise in low-rank kernel-filtering,
we consider here the alternative regularization strategy: Q̃ =

(
D̃2 + τI

)−1
D̃J̃ . These are

coordinate-free expressions. The corresponding in-basis matrix expressions for Q is (see next
paragraph for a derivation):

Q = (DG11D + τI)−1DG11J (3)

where D is the diagonal matrix with diagonal dii = ∑
j wij (the marginal of J on x), and G11

is the (x, x) Gram matrix, i.e. G11,ij = k(xi, xj). The Nyström approximation uses a sample
x̃1:r, typically a subsample of x1:nx . Call G00, G01 and G10 the (x̃, x̃), (x̃, x) and (x, x̃) Gram
matrices respectively. Plugging-in the Nyström approximation G11 ≈ G10G

−1
00 G01 in (3) and

driving τ to 0 (which is justified whenever τ is small with respect to the lowest singular value
of DG10G

−1
00 G01D, or equivalently whenever nx is large enough compared to r), we get the

expression:
Q ≈ DG10(G01D

2G10)−1G01J

29

To see why (3) hold, call Vx = span{δxi , i ∈ 1:n}. Pick a U such that U ′G11U = I. U is the
coordinate matrix of an orthonormal basis u1:n of Vx, in the sense that Uij = uj(xi). There
are at least three bases of interest for Vx: Bδ

x = {δxi , i ∈ 1:n}, Bu
x = u1:n, and Be

x = e1:n,
where ei ∈ Vx is defined by ei(xj) = 1[i = j]. A Markov transition kernel Q̃ is more naturally
expressed by a matrix Q of coordinates in (Be

x, B
e
y) – i.e. if g̃ has coordinates g in Be

y, then
Q̃g̃ has coordinates Qg in Be

x– where it looks like a discrete Markov transition matrix. A
joint probability measure J̃ is more naturally expressed by a matrix J of coordinates in
(Bδ

x, B
e
y), where it looks like a discrete probability matrix. With theses definitions in place,

the matrix expression of Q̃ =
(
D̃2 + τI

)−1
D̃J̃ in (Be

x, B
e
y) is:

Q = U(U ′DG11U
−1′U−1G11DU + τI)−1U ′DG11U

−1′U−1G11J = (DG11D + τI)−1DG11J

Second, we turn to changes of bases. Consider three samples x(0)
1:r, x

(1)
1:n1 and x

(2)
1:n2 with

notation as above. The orthogonal projection P̃ from V2 to V1 has expression P = G−1
11 G12

in (Bδ
1, B

δ
2). Using Nyström approximations we get:

P ≈ G10(G01G10)−1G02

30

References
Atar, R. and O. Zeitouni (1997): “Exponential stability for nonlinear filtering,” Annales
de l’Institut Henri Poincare (B) Probability and Statistics, 33, 697 – 725.

Berlinet, A. and C. Thomas-Agnan (2003): Reproducing kernel Hilbert spaces in prob-
ability and statistics, Springer.

Farmer, L. (2017): “The Discretization Filter: A Simple Way to Estimate Nonlinear
State Space Models,” Working Paper, https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=2780166.

Fukumizu, K., L. Song, and A. Gretton (2013): “Kernel Bayes’ Rule: Bayesian
Inference with Positive Definite Kernels,” Journal of Machine Learning Research, 14, 3753–
3783.

Gittens, A. and M. Mahoney (2016): “Revisiting the Nyström method for improved
large-scale machine learning,” The Journal of Machine Learning Research, 17, 3977–4041.

Guilbart, C. (1979): “Produits scalaires sur l’espace des mesures,” Ann. Inst. H. Poincaré
Sect. B (N.S.), 15, 333–354 (1980).

Kantas, N., A. Doucet, S. S. Singh, J. Maciejowski, and N. Chopin (2015):
“On Particle Methods for Parameter Estimation in State-Space Models,” Statist. Sci., 30,
328–351.

Künsch, H. R. (2005): “Recursive Monte Carlo filters: Algorithms and theoretical analy-
sis,” Ann. Statist., 33, 1983–2021.

Meckes, M. W. (2013): “Positive definite metric spaces,” Positivity, 17, 733–757.

Minh, H. Q. (2010): “Some Properties of Gaussian Reproducing Kernel Hilbert Spaces
and Their Implications for Function Approximation and Learning Theory,” Constructive
Approximation, 32, 307–338.

Moral, P. D. and A. Guionnet (2001): “On the stability of interacting processes with
applications to filtering and genetic algorithms,” Annales de l’Institut Henri Poincare (B)
Probability and Statistics, 37, 155 – 194.

Pitt, M. K. and N. Shephard (1999): “Filtering via simulation: Auxiliary particle
filters,” Journal of the American statistical association, 94, 590–599.

Saitoh, S. (1997): Integral transforms, reproducing kernels and their applications, vol. 369,
CRC Press.

Simon-Gabriel, C.-J. and B. Schölkopf (2016): “Kernel Distribution Embeddings:
Universal Kernels, Characteristic Kernels and Kernel Metrics on Distributions,” .

31

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2780166
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2780166

Song, L., K. Fukumizu, and A. Gretton (2013): “Kernel Embeddings of Conditional
Distributions: A Unified Kernel Framework for Nonparametric Inference in Graphical
Models,” IEEE Signal Processing Magazine, 30, 98–111.

Steinwart, I. and A. Christmann (2008): Support vector machines, Springer.

32

	Introduction
	Kernel Filtering
	High Performance Variant: Low-Rank Kernel Filtering
	Theory: accuracy of the Kernel Filtering Algorithm
	Kernel embeddings
	Accuracy of the kernel filter

	Simulations
	Example: a model with latent supply and demand curves
	Proofs
	Proofs for section 4.1
	Proof of Theorem 1

	Appendix: low-rank approximation formulas

